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Time integration of the Navier–Stokes equations is often carried out by means of the
fractional-step procedure whereby the momentum equations and some form of Poisson
equation are solved separately at each time step. Fractional step methods may be im-
plemented in iterative or non-iterative forms, with the non-iterative schemes offering the
possibility of considerable increases in efficiency. In this note we compare the accuracy and
efficiency of an iterative scheme with those of two non-iterative schemes. It will be shown
that the non-iterative pressure correction method achieves the same order of accuracy as
the iterative method with a considerable increase in efficiency.

The Navier–Stokes equations in unsteady incompressible non-dimensional form are

ut + (u · ∇)u = −∇P + 1
Re∇2u, (1)

∇ · u = 0, (2)

whereu is the velocity,P the pressure, andRethe Reynolds number.
The continuous equations are discretised using Adams–Bashforth for the advective terms

and Crank–Nicolson for the diffusive terms, giving the system

vn+1− vn

1t
+
[

3

2
H(vn)− 1

2
H(vn−1)

]
= −Gpn+1+ 1

2Re
L(vn+1+ vn), (3)

Dvn+1 = 0, (4)

where(v, p) are the discrete velocity and pressure, respectively, andH is the discrete
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advection operator,G the discrete gradient,L the discrete Laplace operator, andD the
discrete divergence. This is a discretisation that is second order in time, using an explicit
scheme for the advection terms and an implicit scheme for the diffusion terms. Fractional-
step methods integrate Eqs. (3) and (4) in a segregated manner; that is, the momentum
equations are first solved for the velocity, and some form of Poisson equation is then solved
for the pressure. The Poisson equation is constructed from the momentum equation and the
continuity equation and, as well as providing the pressure, acts to enforce continuity.

Iterative method. In this method Eq. (3) is solved, using the best current value forpn+1,
to obtainv∗, an approximation tovn+1. This approximate velocity will not initially satisfy
continuity. A correction is then applied of the form

vn+1 = v∗ −1tGπ, (5)

whereπ is a pressure correction, such that the resultingvn+1 does satisfy continuity. An
equation forπ is constructed by substituting Eq. (5) into the continuity equation (4), to give

Lπ = Dv∗/1t.

Onceπ is obtained, the velocity is corrected and the pressure is updated using the pressure
correction as

pn+1 = pn+1+ π. (6)

Equation (3) is then solved again using the updated pressure to obtain a new estimate of the
velocity at then+ 1 time level, and that velocity again corrected to enforce continuity and
provide a pressure correction. This process is repeated until the divergence of the velocity
after the solution of Eq. (3) satisfies a predefined value. The solution is then said to be
converged and the integration continues to the next time step. For the first iteration at each
time steppn+1 is set equal topn.

At the completion of the time step the solution will satisfy both Eq. (3) and Eq. (4), to
within the required convergence condition, and is therefore expected to be second-order
accurate in time.

Projection method. In this method Eq. (3) without the pressure gradient term is solved
to obtainv∗. A correction is applied to this approximate velocity field of the form

vn+1 = v∗ −1tG8 (7)

such that the resultingvn+1 does satisfy continuity. An equation for8 is constructed by
substituting Eq. (7) into Eq. (4), to give

L8 = Dv∗/1t. (8)

Once8 is obtained, the velocity is corrected and the integration continues to the next time
step. In the projection method it is necessary to solve the Poisson equation for8 very
accurately to ensure that the velocity remains divergence free. The projection method is a
one-step method, and is therefore likely to require less computer time per time step than
the iterative method. However, interaction between the implicitly discretised viscous terms
and8 leads to a first order in time error when standard boundary conditions are used [9].

Methods of this type were first suggested by Harlow and Welch [4] and Chorin [2].
The basic projection method was later modified for use with finite volumes defined on a
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staggered grid by Kim and Moin [6], and has since been used by many researchers for the
simulation of unsteady flows (see Zanget al. [11] for a brief review and an application to
non-staggered grids). Much effort has been expended on developing appropriate boundary
conditions for the intermediate velocity field and the pressure Poisson equation to prevent
the first-order error noted above (Kim and Moin [6], Karniadakiset al.[5]), while Perot [9]
suggested a modified LU factorisation scheme which required no boundary conditions for
the intermediate velocity and pressure.

Pressure correction method.The pressure correction method is identical to the iterative
method, but with only a single iteration carried out at each time step. The discrete momentum
equation, including thenth time level pressure, is solved to obtainv∗, as with the first iteration
of the iterative method. Thev∗ field is then corrected to satisfy continuity and the pressure
is corrected exactly as in the iterative method, but with only a single iteration at each time
step. The interaction between the viscous terms and8 now results in an error that is second
order in time, and therefore does not adversely affect the overall accuracy of the scheme.

Methods of this type have been suggested by a number of authors (Van Kan [10], Bell and
Colella [1]), while a similar approach has also been used with an approximate factorisation
method (Dukowicz and Dvinsky [3]).

Discretisation and boundary conditions.The above schemes are defined on the stan-
dard MAC staggered grid using finite volumes, with standard second-order central differ-
ences used for the viscous terms, the pressure gradient, and divergence terms. The QUICK
third-order upwind scheme is used for the advective terms (Leonard [7]). The momentum
equations are inverted using an ADI scheme. Four sweeps of the ADI scheme were found
to be sufficient to obtain accurate solutions for all the cases considered. A preconditioned
restarted GMRES method is used to solve the Poisson8 and pressure correction equations
for all the methods. Other solvers, such as preconditioned conjugate gradient, incomplete
LU, ADI, and Jacobi, have also been tested and found not to affect the overall accuracy
or relative performance of the methods. Of the solvers tested GMRES was found to be
the most efficient. Dirichlet velocity boundary conditions are set on all boundaries. The
intermediate velocityv∗ is set to the same boundary conditions as the velocityv. The use of
a staggered grid with a finite volume method means that no boundary conditions are required
for pressure. A zero normal gradient at all boundaries is specified for8 and the pressure
correction.

Results have been obtained for driven cavity flow (cf. Perng and Street [8]). Initially the
fluid in the square cavity is quiescent. At timet = 0 the tangential velocity on the upper
boundary is set to one, with the normal velocity on the upper boundary set to zero, and the
other boundaries non-slip. The control parameter is the Reynolds number, which is set to
Re= 400, based on the height of the cavity and the tangential velocity at the upper boundary.
Solutions have been obtained on a 50× 50 uniform grid. The solution is integrated in time
from t = 0 to t = 2, in non-dimensional units, for time steps ranging from1t = 0.025 to
1t = 0.003125. Times have been non-dimensionalised by the height of the cavity and the
tangential velocity on the upper boundary. The error was quantified by obtaining theL2 norm
of the difference of the test solution and a solution that was obtained with1t = 0.0015625
integrated for the same amount of time. The largest timestep,1t = 0.025, is close to the
empirically obtained stability limit of1t = 0.03.

Figures 1 to 3 contain the errors for the pressure and U- and V-velocity components
for the projection, pressure correction, and iterative schemes. First-order accuracy for the
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FIG. 1. Pressure error variation with time step.

pressure is obtained with all methods, with the pressure correction and iterative results
almost identical and the projection method error an order of magnitude larger. Perot [9]
observed that the pressure will always be first order in time for schemes of this type.
Results for the U-velocity show that the projection method is first-order accurate while the
pressure correction and iterative methods are second-order accurate. The iterative method
gives results almost identical to those of the pressure correction method, with the projection
method error more than an order of magnitude larger. Results for the V-velocity are similar

FIG. 2. U-velocity error variation with time step.
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FIG. 3. V-velocity error variation with time step.

to those for the U-velocity. Alternative maximum and pointwise norms have also been tested
and show the same behaviour as theL2 norm.

Run times versus error graphs for each of the methods are presented in Fig. 4. The error
is the average of the U-velocity and V-velocity errors, and the run time is in CPU seconds
on a DEC Alpha 3000/700. The most efficient is the pressure correction scheme, requiring
considerably less CPU time to achieve the same accuracy as the next most efficient iterative
scheme. The projection method is the least efficient of the schemes by a considerable
margin.

FIG. 4. Timing results.
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Results have also been obtained with the Reynolds numberRe= 5000. The order of
convergence with respect to the time step and timing results for the high Reynolds number
flow showed the same behaviour as those of the low Reynolds number flow.

The pressure correction method is the most efficient of those tested for this flow. The
projection method is only first order in time and is significantly less efficient than both the
pressure correction and iterative methods. The accuracy of the pressure correction method
is very close to that of the iterative method, but requires considerably less CPU time per time
step owing to its non-iterative form. A major advantage of the pressure correction method,
when compared to other non-iterative projection-like methods, is that second-order accuracy
has been achieved with the standard boundary conditions.
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